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INTRODUCTION

Since our main purpose is to illustrate how a combination of
graphic display and simple arithmetic can be used to enhance the
effectiveness of Daniel's half-normal plots, we shall focus on an
analysis of a - x 4 x 7 data set provided by the responses of person
IBI in the "methodological experiment" presented by (Palmer)
Johnson and Tsao (1944) and also analyzed by Palmer Johnson (1949)
and by Green and Tukey (1960). The full data set involves 8 persons.
We will return below to a fuller description of the data set and a
discussion of how it might be analyzed, and elsewhere to a discussion
of how the analysis might be carried further, with special attention to
the identification and sterilization of exotic values.

We need to make clear our overall prejudices and purposes - a
(well-founded) prejudice that most analyses of variance with 3 or
more factors are used for exploration rather than confirmation, with a

I Prepared in connection with research at Princeton University qponsored by the
U. S. Army Research Office (Durham).
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172 GRAPHICAL EXPLORATORY ANALYSIS OF VARIANCE

Sclear description of the apparent behavior being much more
important than formal significance tests, and a clear purpose to reach
as simple and complete description of the data behavior, in the
instance before us, as we know how, taking reasonable account of
questions of multiplicity, but not overemphasizing precise
significance. We want a description of the appearance of our data,
even though more data might not confirm that appearance. -

Since we further believe that good techniques come from the
accretion of many ideas, not just from a single brain wave, we are not
dismayed by the appearance of at least 12 conceptual ingredients (3
old, 1 due to Daniel). Rather we wonder where the 13th and 14th
will come from. To tease the reader's imagination, we list the 12
ingredients so far at hand (the later ones need not be as large or
important as the earlier):

1) classical analysis of variance

2) aggregation

3) half-normal plotting

4) horizontalized plotting

5) scission into bouquets of contrasts

6) pretrimming by nomination

7) post-trimming by election

8) nominated bouquets

9) 2nd order trimming (super-election)

10) reformulating a response

11) rethinking a scission

12) refactoring an analysis

We believe that these ingredients can be used in any factorial analysis
of variance - and in many others of different form.

The basic elements underlying all this are:

(A) basic ANOVA concepts of decomposition - of separating of
each number into parts, each part coming as purely as we can
arrange from its specified "source,"

(B) anticipation of revision in the light of the data, not only of
numbers but also of the style and form of separation,

(C) use of long-term insight to select specifics for trial,

(D) use of pictures to see what may need special treatment or
modification,

(E) use of arithmetic to conduct modifications,
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(F) ultimately a combination of (a) numerical summaries,
hopefully depictable, and (b) pictorially apparent absence of what
else might plausibly be present.

We now discuss the ingredients, and explain their concatenation
and mixing, in terms of the single 2 x 4 x 7 data set mentioned
above, showing how they lead to a reasonably compact description of
the 56 numbers.
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PART A: ANALYZING IBI's PERFORMANCE IN GRAMS

Al. Looking at the Data Overall

The 2 x 4 x 7 data set for person IB1 (one of the two blind males
in the full experiment) involves 2 dates (1,2), four rates (50, 100, 150
and 200 grams per 30 seconds), and seven (initial) weights (100, 150,
200. 250, 300, 350 and 400 grams). The experimental procedure
involved attaching a pail by a lever system to a ring on the subject's
finger. One of the seven initial weights was placed into the pail, and
then water was allowed to flow into the pail at one of four constant
rates until the subject reported a change in pull on the finger. The
intended response, the difference limen (D.L.), was measured by the
amount of water added by time of report. Five determinations were
made for each of the 28 rate-weight combinations, and the average of
these values was used as the response. The entire experiment was
conducted, for each person, at each of two dates, one week apart.

The full experiment consisted of 8 persons, two persons in each
cell of a 2 x 2 design for male vs. female and sighted vs. blind. In
their analysis of the complete data set, Green and Tukey noted that
person IB1 had a pattern of response that was considerably different
from that of the other persons (including the other blind male) and
designated him as the "eccentric blind man." For this very reason,
we have selected person IBI for our initial (within person) analysis.

TABLE 1. Average difference limen in grams for person IBI - male,
blind.

Rate Initial Weight (Grams)
(gm/30 sec) Date 100 150 200 250 300 350 400

50 1 24.2 25.3 25.1 17.6 20.7 19.4 17.3
2 41.2 29.8 28.5 23.8 20.9 17.8 13.4

100 1 48.1 41.2 31.4 30.4 39.9 36.7 35.5
2 59.1 59.7 48.7 38.1 30.7 28.4 27.2

150 1 60.9 52.0 58.2 60.6 57.1 57.9 49.5
2 75.8 79.9 69.1 64.4 42.2 53.1 36.3

200 1 69.9 76.7 82.4 76.4 71.4 76.9 79.6
2 148.3 123.1 73.5 61.9 77.8 56.0 53.2
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As a first step in the analysis of the performance of IB1 to the
experiment, we display his responses. The actual values appear in
Table 1; a graphical display of the responses is shown in Figure 1.
Figure 1 consists of a series of 7 plots, one for each level of weight
(indicated on the horizontal axis). Each of the seven plots shows the
relationship between the response (D.L. in grams) and rate for both
dates. The responses for each date are connected by a broken line.
In considering Figure 1, the first thing that strikes the eye is the
strong linear relationship between D.L. and rate. In fact, such a
relationship, which was also found by Johnson and Tsao and by
Green and Tukey, holds for each person. In Part C, we will consider
an analysis of the data for person IBI which uses a different
dependent variable (log(response time)) and which produces a
particularly simple interpretation of the relationships between level
of response and the various factors. For the moment, however, we
will press forward with an analysis of person IB1 with response in
the original units - D.L. in grams.
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Figure 1. Person IBI: male, blind. Average difference limen (grams).
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Crude Classical Analysis of Variance

A standard analysis of variance table of the 2 x 4 x 7 factorial
design for person IBI with difference limens in grams as the
dependent variable is given in Table 2. In the table, we have
denoted the independent variables as R for rate, W for weight and D
for date. In determining the values for "F" and the significance
levels, the line of the table corresponding to the three-factor
interaction DRW was (naively) taken as measuring appropriate error
for each of the other lines (extreme model 1).

Given the strong linear relationship between D.L. and rate within
each date-by-weight combination noted from Figure 1, it is not at all
surprising to find that the largest mean square is that associated with
rate. The only other "significant" lines in Table 2 are the weight
main effect and (somewhat less strongly) the date x weight two-factor
interaction.

Crude Aggregated Analysis of Variance

Using the sort of aggregation proposed by Green and Tukey (and
described in section A9), the result would be as in Table 3.

We shall consider more refined analyses starting from (analogs) of
these two tables. The results are similar to those for the classical
analysis, although the 2 x 7 date and weight table is reassembled
(from D, W and DW).

Single df's

A (traditional) [aggregated] analysis would now proceed to pull
apart from the various (significant) [remaining] lines one or more
single-degree-of-freedom components, comparing the magnitudes of
each of the constituent contrasts with that of (the three-factor
interaction mean square) [an appropriate aggregated denominator]
taken to represent error. Rather than beginning with such an
approach, we will cut up each of the lines of the (full) [aggregated]
analysis of variance table (including the DRW line) into single
degree-of-freedom components - contrasts - and compare the sizes
(absolute values) of these contrast components graphically by a
technique related to Daniel's half-normal plots.

In such an analysis, to be described shortly, we do not assume that
any prechosen line of any analysis of variance table is necessarily
solely measuring error. Rather, we assume that any of the selected
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contrasts which combine to constitute some line (i.e., a main effect, a
two-factor interaction, ..., a n-factor interaction) might have mean
values different from zero, but that most of the totality of them will
serve for error estimates. That is, we assume the bulk of the
(properly defined) single-degree-of-freedom components are actually
measuring error - or come close to doing so - but we do not a priori
specify which ones, or which error.

We selected our 2 x 4 x 7 subset of the data in such a way as to
avoid major complications with multiple error terms, which arise
when the whole data set is considered. Similar techniques will apply
to factorial data sets deserving more error terms.

TABLE 2. Standard analysis-of-variance table for person IB1 (dependent

variable is difference limen in grams).

Source df MS DEN F Sig

D 1 348 149 2.33 not
R 3 8514 149 57.06 0.01%
W 6 772 149 5.18 0.5%

DR 3 21 149 0.14 not
DW 6 545 149 3.65 2.5%
RW 18 74 149 0.50 not

DRW 18 149 - - -

TABLE 3. Aggregated analysis-of-variance table for person IB1.

Label df MS DEN F Sig*

Rate 3 8514 105*0 81.10"* 0.01%
Date and Weight 13 635 105 6.05 0.01%

Residual 39 105 - - -

* Notice that (a) significance levels of F-values require a large, rather
unspecified multiplier for multiplicity and (b) 0.01% is the most extreme level
considered.
** Would have been 635 and 13.4, respectively, had any rate interaction
appeared in the following (date and weight) aggregation.
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A2. Bouquets of Contrasts

Since we are going to focus on single degrees of freedom, we need
to break up each factor into a bouquet of contrasts, each a single
degree of freedom. We expect to use the natural combinations (outer
products) of these one-factor contrasts to also break up the two-factor
and three-factor interactions into single-degree-of-'reedom contrasts.

Because the two factors to be broken up (date is already a single
contrast) are scales with equispaced versions (levels), it is perhaps
natural to consider the classical orthogonal polynomials as a possible
first choice for the basic bouquet. Besides these contrasts there are
other types of orthogonal contrasts which, depending on
circumstances, may have greater utility. We shall return to some of
these in section D2.

If the versions of our factors had been only ordered, not
measured, we might have followed Abelson and Tukey (1963) in
selecting an initial contrast, or conceivably, have separated the
response into monotone increasing and monotone decreasing parts.
Unordered versions can often be sensibly partitioned, although we
may have to be somewhat arbitrary in some or all of our choices of
contrasts.

Various bouquets of contrasts have their place in the analysis of
data. We will use a number of different bouquets in our analysis of
our 2 x 4 x 7 data set. Given a collection of bouquets of single-
degree-of-freedom contrasts, one for each line of the standard
analysis of variance table, the next step in the continued analysis of
the data is the assessment of what the values of the contrasts are
trying to tell us about the relationship within and between the
various factors. This assessment will be done graphically via a
procedure related to Daniel's half-normal plots.

A3. Horizontalizing Plots

The classic "half-normal plot" relates the sizes (absolute values) of
the normalized contrasts, ordered by size, with typical values of
order-statistics of the half-Gaussian distribution by plotting (ordered)
size of contrast versus typical order-statistic. The corresponding
natural reference is a line through the origin, whose slope corresponds
to an estimate of the underlying scale a. To make internal
comparison much easier, we shall instead plot

size of contrast vru tpclodrsaitc
typical order statistic vru tpclodrsaitc
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thus making the natural reference a horizontal line, whose height
corresponds to an estimate of a.

Display Ratios

While classical probability plots often use the unit deviates
i i-

corresponding to or --- as the typical order statistics for a

sample of d values, we shall work very close to the order-statistic
medians by using deviates corresponding to

iL i - (3i-1)/(3d+1). For the half-Gaussian (the

distribution of the positive square root of any chi-square on one
degree of freedom), this means using the half-Gaussian working
values, the ith such (of d) being

c(i:d) - 1-i [+ -1 i 6+3d

3d +1 j6d +2

where b is the unit Gaussian cumulative distribution function.

Thus, we shall plot the

display ratio - IC (i:d)Ic(i:d)

versus the typical order statistic - c(i:d) where IC(i:d)I is the ith
largest size of our contrasts. Under the simple (null) model that the
sizes of contrast IC(l:d)I ..., IC(d:d) represent a set of order statistics
from a sample of size d from a half-Gaussian distribution with scale a
and location 0, each of the d display ratios provides an estimate of a.

We compute the display ratios separately for each bouquet of
contrasts, one bouquet for each line of a conventional analysis of
variance table. A plot of display ratio versus working value for a
particular bouquet shows:

1) the general level of variability, hopefully background
noise, captured by a typical defining contrast of the
bouquet and measured by a horizontal line, and

2) the relative magnitude of the various sizes of contrast in
terms of the general level for that bouquet and in terms of
what would be expected under a simple (null) model.
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We tend to focus on the display ratios for the largest sizes of
contrasts, interpreting relatively large display ratios as indicating
potentially meaningful contributions, likely to be worth separate
description.

A plot of display ratio versus working value for a bouquet will
sometimes produce slightly confusing appearances, when granularity,
arithmetic errors, or other causes of individual exotic values keep the
contrasts of smallest size from being as small as a simple model
suggests they ought to be. Thus, relatively high values of the display
ratio for quite small working values should often be ignored. If
considered, they should usually be regarded as suggesting isolated
errors, exoticities or granularities. (We turn later (elsewhere) to
looking for such isolated phenomena.) A general downward trend
(to the right) invites similar interpretation and treatment.

Although we compute the display ratios separately for each
bouquet, ordinarily we will overlay the plots for each bouquet of a
giver type (main effects, 2-factor interactions, etc.) on the same
figure, connecting the points for contrasts in each bouquet by a
broken line. This allows both for internal comparison of the sizes of
contrast within a bouquet and comparison with the sizes of contrasts
of the other bouquets of that type. By using the same vertical scale
for all of the plots, we can also compare the sizes of contrasts across
the various types. The latter comparison allows the assessment of the
relative importance of a given contrast in the experiment as a whole
and also, by comparing the general level of one bouquet with that of
the others, indicates if the set of defining contrasts for a given factor
might be replaced by another set of defining contrasts to produce a
simpler account of the data. Such a possibility exists if the general
level of a particular bouquet, particularly a main effect bcuquet, is
above the levels of the other bouquets. We will discuss the possible
causes of this in Part D.

A4. Display Ratios in the Example

We now return to subject IBl and apply the above procedure,
using the polynomial contrasts. The result is shown in Figure 2,
where we have grouped the bouquets into three sets, plotting the
three main-effect bouquets together in the first panel, the three two-
factor-interaction bouquets together in the second, and the three-
factor interactions in the third panel. The vertical scale for the three
plots is the same, allowing for the comparison of magnitude of the
display ratios for all bouquets.
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The points for contrasts within each bouquet are connected by a
broken line, and the largest size of contrast within each bouquet is
labeled. Occasionally, other contrasts of large size will be labeled.
The notation for the various bouquets is as in the initial analysis of
variance (Table 2); the order of polynomial contrast is indicated by a
number following the bouquet label. For example, R 1 is the linear
contrast for rate, W2 is the quadratic contrast for weight, DW 12 is the
linear (in date)-by-quadratic (in weight) two-factor contrast, and
DRW123 is the linear (date)-by-quadratic (rate)-by-cubic (weight)
three-factor contrast. (We shall return to the various numbers
attached to the bouquets and to the high individual points in
section BI.)

The first thing to note from the plots is that the bulk of the
contrasts have display ratios at a level of about 10 grams. In light of
this background level, we have to recognize the contrasts with the
largest display ratios - R 1 (linear in rate), W1 (linear in weight),
DWI1 (linear in date by linear in weight), D 1 (linear in date), and
DRWI11 (linear by linear by linear three-factor interaction), in
decreasing order - as worth careful consideration. The values of
these display ratios, along with those for certain of the next largest
contrasts within each bouquet, are given in Table 4.

In view of the proportional relationship between D.L. and rate
suggested by Figure 1, it is not surprising that R 1 is the strongest
observed relationship. It is striking that the five largest contrasts in

TABLE 4. Values of display ratio for the
largest contrasts within each
bouquet for the polynomial
decomposition of IB1 (D.L.).

Contrast Display Ratio

R I 124
WI 41

DWI1 34
D 1 28

DRW Ill 16
R2 16
W2 13

all others < 11
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terms of display ratio are solely composed of linear (straight-line)
contrasts and their products. In fact the linear (or linear by linear,
etc.) comparisons have the largest size of contrast within every
bouquet. We will return to this in the next section.

For the three-factor-interaction contrasts, the display ratios for the
contrasts of smallest size are relatively larger than might be expected.
As mentioned previously, this phenomenon might be indicating
granularity due to rounding or small arithmetic mistakes (one deviant
observation tends to contribute similar amounts to each single
degree-of-freedom contrast).

Another phenomenon to notice is associated with the R, W and
DW bouquets. In each of those bouquets, the largest size of contrast
is relatively much larger than the remaining sizes of contrast within
the bouquet. Notice, in each of those three bouquets, that the next-
to-largest size of contrast is also somewhat high in terms of display
ratio, the point for the contrast appearing above the display ratios of
all the remaining contrasts of the bouquet. We call the underlying
phenomenon "dragging upward" and will discuss it in section A8.

AS. The Largest of the Three-Factor Contrasts

The right-most point for DRW requires careful discussion. It
seems to continue, and enhance, a general upward trend for the ratios
plotted for the contrasts in this bouquet. However, it does not rise
far above the others. Had this, for instance, been a linear-by-
quadratic-by-quartic three-factor interaction, or some other
nondescript contrast among the 1 x 3 x 6 - 18 in this bouquet, we
would not have been likely to attend to it. It is, however, the linear-
by-linear-by-linear contrast, a priori the most distinctive and most
likely (however unlikely) to contain something meaningful. To have
it come out as the highest absolute value of all 3-factor contrasts is
thus, by itself, significant at 1/ 18 - 5.56%, so that it needs at most a
little extra push to be worth our honest attention.

Granting, then, that it may include a real effect, how should we
interpret it? It is, after all, a three-factor contrast in a situation where
the constituent single-factor contrasts are all large. For the present,
then, we may not be too wrong to think of it as "probably real, but
likely to be a spill-over from the large main effects because of
something resembling not-quite satisfactory expression of the
response."
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A6. Pretrimmed Bouquets; Nomination

Having found linear, linear-by-linear and linear-by-linear-by-
linear contrasts outstanding in our example, we must ask ourselves:
"In such a situation, where a few contrasts are distinguished above all
others in their respective bouquets, -why did we not plan to treat
them separately in the beginning - not only in this example but in
general?" No good answer is available. So let us trim ov- bouquets
- and even pretend that we pretrimmed them in this example -
moving the linear contrast out of each single-factor bouquet, the
linear-by-linear ("linear-to-the-2") contrast out of each two-factor
bouquet, and the linear-by-linear-by-linear ("linear-to-the-3") contrast
out of the three-factor bouquet.

Each original bouquet, corresponding to a line in the analysis of
variance table and consisting of d contrasts, has now been partitioned

'into two bouquets:

" a nominated contrast consisting of the single linear-to-the-j
contrast; nominated a priori as likely to be interesting

" a trimmed bouquet consisting of the d-1 remaining contrasts,
which collectively are telling us about the contribution of the
corresponding line of the analysis of variance table after
eliminating variation describable by the linear-to-the-j contrast.

In our example this creates 13 bouquets from the original 7 (since D
is already linear-to-the-i, there is no trimmed bouquet for D). (For a
related use of the word "nominated" see S. C. Pearce, 1953 or 1976.)

By nominating D1, R1, W1, DR 11, DW1l, RW11, and DRWll as
a priori interesting contrasts we have agreed to treat each of these
contrasts not as one of the d members of the original effect bouquet,
but rather as a separate thing unto itself. As such, we display them
using the working value c(1:1) - .674 to compute the display ratios
for each of the nominated contrasts.

By pretrimming our bouquets, removing the nominated contrast
from the initial bouquet with d members, and producing a trimmed
bouquet with d-I members, we have agreed to treat the contrasts in
the trimmed bouquet as collectively separate in impact from the
nominated contrast. As such, we assess the magnitudes of the sizes of
contrast for the d-1 members of the trimmed bouquet in terms of
what would be expected from a sample of size d-l from a half-
Gaussian distribution and so use the working values
c(l:d-1), ..., c(d-l:d-1) to compute the display ratios.
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Results in the Example; Nominated Contrasts

Proceeding in this manner with our example data, we produce
Figure 3. In order to better show the detail for the trimmed
bouquets, we have truncated the vertical axis of the plots at 50 and
thus do not show directly the display ratios for the three largest
nominated contrasts: R 1, Wi and DW 11, each of which should be
plotted at working value c(1:1) - .674.

On examining the plots, we see first of all that the display ratios
of all the nominated contrasts, with the exception of DR 11, are
notably larger than the display ratios of any of the contrasts
remaining in the trimmed bouquets (with the exception of the
display ratio of the smallest size of contrasts in the trimmed three-
factor bouquet, corresponding to the (small) contrast DRW 133 -

possible reasons for this large display ratio have been previously
mentioned).

The display ratios for the 7 nominated contrasts are shown in
Table 5, both for the nominated contrasts plotted in Figure 3 and, for
comparison, as parts of the original effect bouquets plotted in
Figure 2.

We can see from the table (and from the plots) how much the
display ratios for 6 of the nominated contrasts have each increased
when treated as single-contrast bouquets over the display ratios for
the same contrasts when treated as the largest member of one of the
original bouquets. (The median display ratio, a natural background
level, has fallen from 10 to 9.) The ratio of nominated display ratio to
original display ratio appears as the last column of Table 5. We also
see that, in terms of size of display ratio, the ordering of the display
ratios for the nominated contrasts is essentially the same as before,
with the exception of D 1, which has moved down from the 4th
largest to the 6th largest (after nomination).

These increases in the values of the display ratios reflect the sizes
of the working value used to compute the display ratios, which have
decreased from c(d:d) to c(1:1). The ratio of c(d:d) to c(1:1) is exactly
equal to the proportional increase in display ratio due to
pretrimming. We can see from the table that the ratio of increase
grows somewhat as the size d of the original bouquet grows. This
growth explains the increase in relative importance of DRW 111 and
RW11, both of which belonged to bouquets with 18 members. This
also helps to explain why DR 11, whose display ratio is inflated by a
factor of only 1.9, remains at the level of background variability. The
plot of display ratio vs. working value for the full DR bouquet in
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TABLE 5. Display ratios and reference working values for the nominated
contrasts when trimmed out and when left in the original effect
bouquets.

Nominated
Contrast (In Figure 2)

Working Bouquet Working Ratio Of
Display Value Size Display Value Display

Contrasts Ratio c(1:1) d Ratio c (d:d) Ratios

R 1 237 (.674) 3 124 (1.282) 1.9
W 1 98 (.674) 6 41 (1.620) 2.4

DW11 82 (.674) 6 34 (1.620) 2.4
DRWI1 49 (.674) 18 16 (2.093) 3.1

RW11 33 (.674) 18 11 (2.093) 3.1
D 1 28 (.674) 1 28 (.674) 1.0

DR 11 9 (.674) 3 5 (1.282) 1.9

Median Display

Ratio Over 9 10 .9

All 55 Contrasts

Figure 2 shows DR 11 at the end of a general decline; DR 11 is
relatively smaller than might be expected for the largest order
statistic of a sample of size 3.

Before examining the trimmed bouquets in Figure 3, we should
reiterate that we are, in this section, discussing only pretrimming. By
coincidence (perhaps), the nominated contrasts in our example all
were the largest representatives of their respective bouquets. Since
the linear-to-the-j contrasts are the most easily interpretable (and in
general the strongest in many experiments), we should have
nominated them a priori, in any event. The increase of display ratio
on nomination will, of course, be less when the nominated contrast is
not the largest in its bouquet.

Other Alternatives

If we had used a different set of orthogonal contrasts other than
the orthogonal polynomials to define a bouquet, we could, and
probably should, still pretrim whenever one of the contrasts is
naturally a priori distinguished above all others. It is, or course, also
possible to post-trim a bouquet, electing for removal the largest (or
largest few) contrasts which attract our attention because of their
relatively large display ratios. We discuss this possibility in
section B3.
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A Nominated Bouquet?

We have nominated 7 contrasts, one from each line of the basic
analysis. So far we have treated them as 7 one-contrast bouquets.
But why should we not treat them as 1 seven-contrast bouquet, the
nominated bouquet? Table 6 shows the display ratios for the
nominated bouquet; the first panel of Figure 4 is the corresponding
horizontalized plot.

Both Table 6 and Figure 4 show R I as standing out. It might be
reasonable to super-elect (see section B3) R 1 and post-trim the
nominated bouquet, separating R 1 into its own 1-contrast bouquet
and leaving the remaining contrasts in a 6-contrast bouquet. The
result of this is shown in the last two columns of Table 6 and the
second panel of Figure 4. We observe that, whether we post-trim or
not, the display ratios of the other 6 nominated contrasts are
surprisingly similar. We will return to this point below.

A7. Trimmed Bouquets in the Example

We now return to the trimmed bouquets to consider the effect of
nomination and trimming on their display ratios. A consequence of
pretrimming can be seen by comparing the plots of the display ratio
versus working value for the trimmed and original bouquets.
Considering, for example, the three-factor bouquet, we can see from

TABLE 6. Display ratios for the nominated contrasts as members of the
seven-contrast nominated bouquet.

After Super-Electing R 1
7-Contrast Bouquet and Post-Trimming

Contrast Display Ratio Working Value Display Ratio Working Value

R 1 94 (1.691) 237 (.674)

W1 55 (1.208) 41 (1.620)
DWl1 61 (.908) 49 (1.119)

DRW Ill 49 (.674) 41 (.804)
RW11 47 (.472) 40 (.555)

D 1 64 (.288) 56 (.336)
DR I 52 (.114) 45 (.132)
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Figure 2 that the display ratio of the second largest contrast, DRW 123,
appears at essentially the same level as that of the third largest
contrast DRW112. Turning to Figure 3, we now see that the display
ratio of DRW 123 (now the largest size of contrast) is noticeably lower
(by .7 units) than that of DRW12 (now the second largest size of
contrast). Looking further, comparing the plots of the trimmed
bouquets with the original bouquets, we can see a general tendency
for the slopes of the lines between adjacent points to become more
negative.

Both this and the reduction in the general level of the display
ratios for the trimmed bouquets are consequences of a reduction in
the "dragging upward" phenomena to be discussed in the next
section.

The Changing Typical Size of Residuals

Starting to act as if we had nominated all linear-to-the-j contrasts
will change the typical sizes of the display ratios, decreasing such
sizes when the nominated contrasts are large, as in this example, and

Nominated Contrasts as a Bouquet Nominated Contrasts as o Bouquet
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fluctuating them irregularly when the nominated contrasts appear
similar in size to the others in their bouquet. The most interesting
summary sizes of the display ratios seem to be:

-- before nomination --

median for all 55 initial contrasts - 9.9

median for 45 initial non-main-effect contrasts - 9.3

- after nomination ---

median for all 55 contrasts with nomination - 8.5

median for all 48 unnominated contrasts - 8.1

median for all 41 unnominated, non-main-effect contrasts - 8.1

Roughly speaking, nomination reduced the median size of display
ratio by 13%. (The effect w -uld have been larger if we had not used
the median, a highly resistant summary. It is here neither important
nor wholly negligible.)

A8. Dragging Upward

In our example (section A4) we saw that retaining the largest
contrast in each bouquet tended to make the second-largest contrasts
look more distinctive than need be. Do we expect this in general?

We need only look at the divisors, at the order-statistic typical
values, to see how this occurs. For d - 7 (say before setting the
largest apart) and d - 6 (after) we have the values in Table 7. On a
relative basis, the divisor for what was initially the second largest size
of contrast was about X as large before setting aside the largest one as
it was after this. It is, in fact, always the case that the typical value of
the ith order statistic of a sample of size d, c(i:d), is smaller than
c(i:d-1), the typical value of the ith order statistic of a sample of one
less. The relative difference is most pronounced for smaller bouquet
sizes and is largest for the next-to-largest contrast of a bouquet.
Table 8 shows the reference values for the next-to-largest contrast
within an original bouquet both before and after trimming out the
largest contrast, for the bouquet sizes of our example. The table also
includes their ratios c(i:d)/c(i:d-1), and the median value of these
ratios.
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If we have pretrimmed our bouquets, then the various display
ratios for the trimmed bouquets will be reduced from what they
would otherwise have been in the original bouquets by fractions
indicated by Tables 7 and 8. If the nomination was done in advance
of seeing the data - and, also, to a practical approximation, if it was
done before any detailed analysis of the data was made - then the
after-trimming display ratios will almost surely be more appropriate.
(True post-trimming requires somewhat more careful thought.) The
larger display ratios before trimming were "dragged upward" by
being taken as less exalted order statistics than they deserved to be -
because the even higher contrast, deserving of nomination, unfairly
seized the highest position. By trimming, we have prevented this
dragging upward, restoring the display ratios to what they ought to
be.

TABLE 7. Illustration, for d - 7, of dragging upward via denominators.

d-7 d-6 Ratio to
i c (i:7) c (i:6) Ratio Median

7 1.691 - - -

6 1.208 1.620 - .745 .882
5 .908 1.119 .812 .961
4 .674 .804 .838 .992
3 .472 .555 .852 1.008
2 .288 .336 .859 1.017
1 .114 .132 .863 1.021

median - .845

TABLE 8. Dragging upward via denominators of the next-to-largest
contrast.

d c(d-l:d) c(d-l:d-1) Ratio Median Ratio*

3 .674 1.058 .631 .661
6 1.119 1.534 .729 .823

18 1.691 2.070 .817 .937

* Median is of c(i:d)/c(i:d-1) for i - 1 ... , d - 1.
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A Possible Initial Plot

We could try to reflect this dragging upward effect in an initial
plot, at the cost of making things rather "busy" looking. Figure 5
shows the three-factor sizes of contrast with

JC(i:d) plotted as 0
c(i:d)

C(i:d) plotted as 1

and Ic(i:d-)
IC(i:d)I 

plotted as 2c (i :d -2)

with the three for each i connected by broken lines. The vertical axis
has been truncated at 20 to show the main detail. We see a consistent
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Figure 5. Effect of undragging for the three-factor contrasts. IBI - D.L. in
grams - polynomial contrasts.
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decrease in the value of the display ratio as we move from a bouquet
of all 18 to a bouquet of the smallest 17 to a bouquet of the smallest
16 sizes of contrast. The horizontal spread in the plot of each size of
contrast, indicated by the pair of lines connecting a 0, 1 and 2, shows
the relative change in value of the reference value as the bouquet size
is reduced. The change in working value versus bouquet size is the
most pronounced for the largest size of contrast, as is the decline in
the value of the display ratio.

Since we must expect some such effect, even if the largest contrast
did not deserve to be nominated, it is not easy to argue cogently from
such a plot. We shall not pursue its possible use further.

A9. The Effect of Aggregation

Sections A2 to A8 have been concerned with either (a) choosing a
general approach or (b) illustrating the consequence of using the
approach starting from Table 2 or an analog. It is time to ask what
changes we expect when we start from an analog of Table 3, if we
aggregate before going to the individual contrasts.

Opening Analysis

If we are to pretrim, we should choose the nominees before any
detailed analysis of the data. So it is natural for us to begin with a
conventional post-nomination analysis-of-variance table, involving 13
lines. Table 9 sets out the numbers. We will use the notation "X (n)"
for the nominated portion of the bouquet labeled by "X".

A striking thing to note from the post-nomination anaysis-of-
variance table is that the value of the mean square for DRWtrim, the
three-factor interaction after removing the linear-to-the-3 component,
is larger than the values of the mean squares for any of the other
"trimmed" lines in the table.

The Notion of "Above"

In a general context, one line of an analysis-of-variance table is
"above" another line if variability in the "lower" line inevitably
penetrates into the "upper" line, a situation often formalized (usually
satisfactorily) as: "the expected mean square of the former ("upper")
line contains all the terms in the expected mean square of the other
("lower") line."
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In doing aggregation after nomination, we need to be somewhat
careful in defining what is above what. We will take the view here
that "X(n)" is above "Xtrim" and also above anything that "Xtrim" is
above (using the conventional definition to decide the partial
orderings for the "trim" lines). Whether any nominated contrast can
be above any other nominated contrast is a consequence of the
particular sets of orthogonal contrasts used for the various bouquets.
In our particular situation, where we are using sets of orthogonal
polynomials (and their outer products) to define the various bouquets,
Interpretation One holds that no nominated contrast can be above
any other nominated contrast. Thus, for example, R 1 is not above
RW11 because R1 contains the mean of the W effect while RWll
contains the slope (but not the mean).

The situation is perhaps easier to understand if we use a less
familiar notation. Write x0 if we have taken a mean over x, and x, if
we have taken a slope over x, and X or X, for having done neither,
without or with trimming. Then

RI -d 0 r, w0

TABLE 9. Analysis-of-variance table after nomination and before
aggregation. (Labels for all nominees (i.e., linear, linear-by-
linear, etc.) are marked (n).)

Label df MS DEN F Sig

R (n) 1 25426 94 270.5 0.01%c
D (n) 1 348 94 3.70 10%
W (n) 1 4338 94 46.1 0.01%
DR (n) 1 36 94 .38 not
RW(n) 1 492 94 5.23 5%
DW (n) 1 3041 94 32.4 0.01
DRW(n) 1 1089 94 11.6 0.5%
Rtrim 2 58 94 .62 not
Wtrim 5 59 94 .63 not
DRtrim 2 14 94 .15 not
RWtrim 17 49 94 .52 not
DWtrim 5 46 94 .49 not
DRWtrim 17 94 -

(Total) (55) 689
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RW11 -do r, w1

while

R - do R w 0

RW - do R W

or

R, - do R, wo

Rt Wt - do Rt Wt

so that the 3 basic questions are: Is w0 above wl? (No, but!) Is w0

above W? (Yes!) Is w 0 above Wt? (Yes!) Where the parenthesized
answers are for Interpretation One.

The issue is that a real (non-zero) slope need not - but is very
likely to - imply a real (non-zero) mean. If the exact location of the
mean for a factor is not any meaningful value, then the likelihood of
a mean-free slope is small, so we may want to move away from
Interpretation One.

It is far from clear when we ought to move all the way from
Interpretation One to Interpretation Two and say "xo is over x1 ". For
the present, we recommend, in such circumstances, accepting
Interpretation Two as a possible alternative, not an exclusive choice.
One reason for this caution is the absence of any standardized way
for x, to contribute to x0 that is at all analogous to the standard
contribution

U2

number of terms

of X to x0 .

Rules for Aggregation

Aggregation (as detailed by Green and Tukey) is the combination
of lines in the analysis-of-variance table according to the values of
their mean squares, using a rule of thumb (in philosophical contrast
with significance testing, where non-significance is followed by
pooling). The procedure is to start with the lowest remaining line (in
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terms of "above" with ties broken by value of mean square) and
aggregate any other line with it which

a) it "above" the basic line and has mean square less than
twice that of the basic line;

b) is NOT "above" any other line which does not satisfy (a).

A10. Aggregation in the Example

We start the aggregation with DRWtrim, the lowest of the low, as
we should. Since the line for each of the trimmed bouquets is above
DRWtrim and since each of the mean squares is less than (twice) that
of DRWtrim, the entire set of trimmed bouquets will be aggregated
together. Additionally, since the nominated contrast DR 11 is above
DRtrim, it is also above DRWtrim; and since the mean square of DR 11
is also less than (twice) that of DRWtrim, DR 11 is also aggregated in
with the trimmed bouquets. No other nominated contrasts have
mean squares less than twice that of DRWtrim, and so this step of
aggregation ceases. We will identify the aggregated collection of all
trimmed bouquets and DR 11 as "residual".

No other aggregations are possible, and so we are led to an
aggregated analysis-of-variance table with 7 lines: 6 lines

corresponding to the 6 largest nominated contrasts and a seventh line
called residual with 49 degrees-of-freedom.

TABLE 10. Display ratios for the six largest nominated contrasts as
members of 6-contrast and 5-contrast bouquets.

After Super-Electing R I

6-Contrast Bouquet and Post-Trimming

Contrast Display Ratio Working Value Display Ratio Working Value

R 1 98 (1.620) 237 (.674)

W1 59 (1.119) 43 (1.534)
DW11 68 (.804) 55 (1.009)

DRW 111 59 (.555) 49 (.674)
RW1I 65 (.336) 55 (.402)
D1 141 (.132) 119 (.157)
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We can choose to treat the 6 remaining nominated contrasts as a
single bouquet of 6. In this case, we form the display ratios shown in
the first two columns of Table 10. If we were "'splitters," we might
make a separate bouquet of R 1, leaving the other 5 nominees in a
single bouquet, which we will call "middle 5" (since the largest and
smallest of the original 7 have been removed). The last two columns
of Table 10 show the resulting display ratios.

The striking thing in Table 10, when compared with Table 6, is
the proportionally large increase in the display ratio for D 1. The
suggestion, in view of the relative constancy of the display ratio of
the next 4 contrasts, is that the size of the date main effect is larger
than might be expected for the smallest of the unaggregated
contrasts, possibly because part of one of the dates was "different".

The analysis-of-variance table after aggregation, collecting the 6
largest nominated contrasts into a bouquet and then electing
(separating) out R 1, has three lines, given in Table 11. The
horizontalized plots for the three bouquets corresponding to Table 11
are shown in Figure 6. The essential difference between the first
panel of Figure 6 and the second panel of Figure 4 is that we have
now put the smallest nominated contrast, DR 11, into the residual
before constructing the nominated bouquet. (The size of contrast for
DR 11 is, in fact, exactly the median size of contrast of the 49
members of the residual poly-bouquet.) The main result of this
exclusion of DR 11 from the nominated bouquet is to inflate the size
of the display ratio of the now-smallest member, D 1.

TABLE 11. Analysis-of-variance table after nominating, aggregating,
collecting all remaining nominated contrasts into a bouquet
and electing out the largest.

Label df MS DEN F Sig*

R (n) 1 25426 64 397 0.01%
middle 5 5 1862 64 29 0.01%
Residual 49 64
Total (55) 689

* Notice that (a) significance level of F-values requires a large, rather

unspecified multiplier for multiplicity and (b) 0.01% is the most extreme level
considered.
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Turning to the second panel of Figure 6, the horizontalized plot of
the residual bouquet of 49, we see that our aggregation has
eliminated the high values of display ratios for the smallest of the
three-factor contrasts that we have become used to seeing. Instead,
the smallest four contrasts within the residual bouquet (in order:
DW 13, RW33, RW24 and W6) have smaller display ratios than might
be expected. This seems unlikely to mean anything. (The smallest
three-factor contrasts, DRW133 and DRW116, are now the 8th and
11th smallest contrasts of the 49 and are in the bump seen on the
left-hand side of the plot). The largest three contrasts are the three-
factor contrasts DRW123, DRW112, DRW122, in decreasing order,
each of which has a display ratio very slightly smaller than might be
expected. In general, the display ratios of the contrasts in the
residual bouquet are almost precisely what we would expect for
random Gaussian noise with homogeneous variability.

Results after Aggregation

At the end of our aggregated analysis we have come to the
following overall phenomenological picture:

Nominotod Controsts os a 8ouquQt Agrgated Cont-osts as o ec0-Q
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Figure 6. Person IBI - D.L. (grams). Result of aggregation and election.
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" large linear rate effect

" moderate linear-to-the-j contrasts for each of 5 other lines

" perhaps a few small exotics, calculation errors, etc. that remain
unflagged

" a featureless "error body"

This is, of course, except for the small exotics, just what we saw when
we didn't begin by aggregating, an encouraging agreement. All these
choices of analysis can, and often should, lead to the same report (see
section B5).

And under Interpretation Two?

Almost as an aside, we note that if we had considered the various
nominated contrasts to be above each other, as might seem reasonable
after aggregation (i.e., R I is above RW 11, DR 11 and DRW 111 but not
above DW 11), then the resulting aggregation would produce 4 lines
rather than 3, namely:

.R1

* D 1, DW 11 and W 1 (linear date and weight involving a mean on
R)

* DR11, RW1l and DRWl1 (linear date and weight involving a
slope on R)

* all trimmed bouquets

This, too, gives an analysis worth looking at and thinking about.

PART B: DATA-GUIDED TRIMMING OF BOUQUETS

B1. Scales and Ratios-to-Scale

We are now used to plotting display ratios of the form

size of contrast
typical order statistic

in various ways. The general picture is that most ratios are
estimating a residual variability (possibly differing from one bouquet
to another), but that some, hopefully a few, are trying to reveal
consistent contributions of some sort. To assess the size of the
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residv'al variability, it is thus natural to turn to the median (or
conceivably the midmean) of these display ratios. It is this median
that is shown as "scale" next to the bouquet labels in the
horizontalized plots (Figures 2, 3, 4, 6). Because of the "dragging
upward" phenomena we are not surprised to see this scale decrease
somewhat as we trim the bouquets, removing opportunities for
dragging upward.

Ratio-to-Scale

We have been judging the sizes of the display ratios both
externally - looking across bouquets - and internally - within
either the entire or a trimmed bouquet. For internal comparison, it is
convenient to have numbers, and the natural number to look at is the

ratio-to-scale - display ratio
median display ratio

(In other contexts, but not here, we may want to refer to this as an
assassination or sterilizability ratio.) It is these ratios that are attached
(in parentheses) to individual high points in the horizontalized plots
(Figures 2, 3, 4, 6).

B2. Null Behavior of "Ratio-to-Scale"

It is helpful to know how large values of ratio-to-scale we are
likely to see in a null situation, particularly how large a value we are
likely to see for that contrast of largest size (in the bouquet at hand).
The distribution of

display ratio (for largest-size contrast)
median display ratio (for all contrasts in the bouquet)

is easily simulated, starting with a sample of d "sizes" from a half-
Gaussian. The resulting % points are given in Table 12.

Simulation Details

Each row of Table 12, corresponding to a bouquet of size d, was
computed from the empirical distribution of the ratio-to-scale for the
largest order statistic from a sample of size d from a half-Gaussian
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distribution. This empirical distribution was based on 2048 replicates.
The half-Gaussian random variates were generated using the random

normal generator of Kinderman and Monahan (1976), that generator

using the McGill universal uniform generator (see Chambers, 1977), a

combination of a 32-bit congruential with an independent 32-bit

shift-register generator.

Simulation Error

To obtain an estimate of the variability of these simulated percent
points, a method akin to balanced repeated replications (the multi-
halving jackknife) was used. Based on the parity of the ith digit in
the binary representation of the replication number (1-2048, in the
order of generation), the collection of 2048 values of ratio-to-scale can
be divided into 11 pairs of mutually orthogonal, interpenetrating

TABLE 12. Percent points from the distribution of the ratio-to-scale of the
largest size of contrast for a sample of size d from the half-
Gaussian (from simulations of 2048 replicates each - standard
errors in parentheses).

Sample Size Probability of Larger Value

d 20% 10% 5% 1% 0.5%

2 1.40 (.02) 1.67 (.01) 1.83 (.01) 1.95 (.01) 1.98 (.01)
3 1.22 (.03) 1.75 (.06) 2.48 (.15) 5.25 (.67) 6.71 (1.0)

4 1.30 (.03) 1.65 (.04) 2.12 (.08) 3.86 (.32) 4.80 (.40)
5 1.30 (.03) 1.70 (.05) 2.14 (.06) 3.86 (.25) 4.61 (.43)
6 1.30 (.01) 1.60 (.04) 1.95 (.04) 3.22 (.18) 3.90 (.27)
7 1.28 (.02) 1.56 (.03) 1.91 (.06) 2.98 (.12) 3.70 (.30)
8 1.28 (.02) 1.53 (.02) 1.80 (.05) 2.64 (.08) 3.19 (.24)
9 1.24 (.01) 1.53 (.02) 1.80 (.04) 2.58 (.11) 3.01 (.17)

10 1.27 (.03) 1.51 (.03) 1.78 (.04) 2.61 (.09) 2.88 (.10)
15 1.24 (.02) 1.46 (.02) 1.65 (.02) 2.27 (.11) 2.54 (.13)
20 1.22 (.01) 1.39 (.01) 1.55 (.02) 2.01 (.03) 2.17 (.03)
30 1.18 (.01) 1.30 (.02) 1.44 (.02) 1.74 (.04) 1.88 (.05)

approx.
.36 14 3.24 1.42+ 10.7 1.43+ -5

(fordd>2) 1.20+-d d 138+-d 

di
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half-samples. From each pair of half-samples, two estimates (one for
each half-sample) of the percentage points can be obtained, and an
estimate of the variance of the (full-sample) percent point, worth
perhaps 1 df, comes from %/ the squared difference of the half-sample
estimates. The standard errors, shown in parentheses in Table 12, are
the square roots of the average of the 11 separate variance estimates
and each is worth (optimistically) perhaps 11 df.

d - 2 is Special

The anomalous appearance of the percent points for d - 2, relative
to the general pattern exhibited for the larger bouquet sizes, is due to
the special constraint placed on the maximum size of the ratio-to-
scale for a sample of size 2. Since we have defined the denominator
of the ratio-to-scale as the median of the two display ratios, the values
of the ratio-to-scale for a sample of size 2 are bounded above by 2.

Some Approximations

Approximations for the values of these percent points, valid for
d > 2, are given at the bottom of Table 12. These approximations
were derived by fitting a linear dependence of the percent point on
I/d, a column at a time, by a simple resistant regression. To preserve

monotonicity between columns for large values of d, the last two
approximations were modified by -.02 and +.02, respectively. The
approximations have relative errors of less than 8% throughout the
pertinent (d >, 3) entries of the table.

In terms of the estimated standard errors, 30 of the 55
approximations were within 1 standard error of the simulated
percentage point, and 44 of the 55 approximations were within 2
standard errors. (The null comparison calls for 36 and 51.
respectively.) In these terms, the approximations were relatively
better for the columns for 5%, 1% and 0.5% probabilities of a larger
value (P), where 31 of the 33 approximations were within two
standard errors.

The maximum absolute estimated error for the approximations is.
by column, .10 for P - 20%, .12 for P -10%, .11 for P - 5%, .30 for
P - 1% and .36 for P - 0.5%.
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B3. Post-Trimmed Bouquets; Election

The value of the ratio-to-scale of the largest size of contrast within
a bouquet (which may be either already pretrimmed or an original
bouquet) provides us with a criterion for use in assessing the amount
of attention that should be paid to that particular contrast in terms of
describing the data. The largest size of contrast within the bouquet
can be considered as indicating an interesting, potentially credible,
component of the total information collectively imparted by the
bouquet if the value of its ratio-to-scale is larger than some selected
threshold value, where the threshold value can be selected in view of
our Table 12 and probably should depend on the number of contrasts
in the bouquet.

Having found such a display ratio, we can elect it for special
attention and post-trim the bouquet, creating two new bouquets: one
consisting solely of the elected contrast - designated as potentially
interesting - and the other, post-trimmed bouquet consisting of the
remainder. We then proceed as we did for nomination and pre-
trimming, recomputing the display ratios, standing ready to assess the
relative importance of the elected contrast in the experiment as a
whole in terms of its relative standing in terms of display ratio.

We can, and may need to, repeat the election process before doing
anything else, comparing the ratio-to-scale of the (now) largest size of
contrast within the post-trimmed bouquet with an appropriate
threshold value and proceeding as above if the threshold value is
exceeded. (Experience will show, we believe, to what extent such
recursive calculation is wise.) At some stage, which might very well
be the assessment of the largest size of contrast within the initial (not
post-trimmed) bouquet, the ratio-to-scale of the largest size of contrast
within the current bouquet will not exceed the threshold value. The
interpretation is that this contrast, and hence all remaining contrasts
of smaller size, does not appear individually to be capturing a
significant amount of the information embodied in the bouquet
beyond that expected by the simple (null) half-Gaussian model. At
this stage, post-trimming certainly ceases.

We will end up splitting the initial bouquet into two sets of
contrasts: the first set, which may be empty, consists of the elected
contrasts, the largest in the initial bouquet, each of which
individually appears to account for an important amount of the
information embodied in the bouquet. The second set is the post-
trimmed bouquet and consists of the remaining (smaller) contrasts,
which are deemed not to be separately providing significant
information. We return later to the possibility of extracting
additional information from the post-trimmed bouquet.
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Treating the Elected Contrasts

The elected contrasts can be treated either individually, source
bouquet by source bouquet, or as members of a single bouquet, the
elected bouquet, analogously to our treatment of the nominated

contrasts. They could even be combined together with the
nominated contrasts into a single bouquet, the nominated-plus-
elected bouquet. In considering the elected contrasts, some attention

should be paid to issues of multiplicity.

We can apply the post-trimming procedure to the nominated

bouquet itself (as well as to the elected bouquet and the nominated-
plus-elected bouquet). Contrasts flagged as too large in terms of their
ratio-to-scale within such a bouquet will be referred to as being
super-elected, since they have distinguished themselves above the

other contrasts, already distinguished by nomination or election.

B4. Election (Post-Trimming) in the Example

Although we have advocated pretrimming (nominating) the D 1,
R 1, WI, DR 11, DWl, RWll and DRWIII linear-to-the-j contrasts as

a general maxim, it is interesting to consider what would have been

the effect if instead we had retained the full bouquets and elected
large contrasts exceeding some threshold value(s), probably less than
or equal to 2.5. Returning to Figure 2, we have R1, WI and DWll as
the three most obvious candidates for election, having ratios-to-scale
of 7.8, 4.4 and 3.4, respectively, each of which is above the
corresponding 1% point for the appropriate bouquet size from
Table 12. These, of course, had the highest display ratios after pre-
trimming, substantially exceeding the levels of all other contrasts. A
horizontalized plot of the result of electing R 1, W I and DW 11, post-
trimming the R, W and DW bouquets and leaving the other bouquets
alone, is shown in Figure 7.

The vertical axis of the plot has been truncated at 50 to show
detail, and so the display ratios of the elected contrasts, which we are
treating as individual bouquets, are off scale. These ratios are the
same as in Table 5 and also correspond to the values of "scale" shown
in the inserts of the horizontalized plot. This plot is, of course, a

middle ground between the horizontalized plot of the original

bouquets (Figure 2) and the horizontalized plot of the pretrimmed
bouquets (Figure 3). Depending on the values of threshold selected,
we could have also considered electing DRWll, RWII and W2, in
that order. Since the threshold values for suggesting this do not
reach the 10% points of Table 12 in each case, we shall not do so, but
instead will turn to Figure 3.
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On looking at the values of ratio-to-scale for the largest contrasts

in the pretrimmed bouquets in Figure 3, we see that R2 and W2 may
be of marginal interest and that no other contrasts distinguish

themselves.

Clearly, a large part of the story is being told by the six largest
nominated contrasts: R1, W1, DWII, DRWl11, RW11 and DI, in
apparent order of importance. Of these, we have already super-
elected R 1 as the single contrast displaying the most information
about the experiment.

It is possible to push the analysis of the responses for person IBI
further, but in order to do so more readily, and to demonstrate more
clearly certain other characteristics of our horizontalized plots, we
will reformulate the response. First, however, we summarize what
we have found so far about IBl's responses.

B5. The Final Outcomes for the First 56 Numbers

The previous sections have indicated that, as far as difference
limen in grams is concerned, the relationship between the responses
of IBI and the various factors is largely captured by the nominated

contrasts Ri, WI, DW11, DRW111, RWI1, Dl and DR11. Let us
model, with i - date, j - rate and k - (initial) weight, the response
in terms of the linear-to-the-j contrasts as

Yijk - a0 + bDd(i) + bar(j) + bww(k) +

+ bDwd(i)w(k) + bawr(j)w(k) + bDRd(i)r(j) + bDRwd(i)r(j)w(k) + z,,k

where, for convenient comparison of coefficients, we have taken

Zd(i) - Zr(j) - Zw(k) = 0

Zd (i) 2 - I

r(j) 2 - 3

;w(k) 2 - 6.

Then we can summarize our results by
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a0 - centercept - 50.4

bR - rate slope - 24.6

and by the other linear-to-the-h (h - 1, 2, 3) contrasts in the 2 x 2 x 2
table:

No D D

No R R No R R
No W ao  bR  bD -3.5 bDR - 1. 3

W bw - -9.5 bRW - -3.7 biw - 11.3 bDRW - -7.8

The residuals are

Rate Initial Weight (Grams)

(gm(30 sec) Date too 150 200 250 300 350 400

50 1 -1.3 1.5 3.0 -2.8 2.0 2.3 1.9
2 8.5 0.3 2.1 0.5 0.8 0.8 -0.4

100 1 6.2 0.4 -8.4 -8.4 2.2 0.0 -0.1
2 -3.2 3.8 -0.8 -4.9 -5.9 -1.8 3.5

150 1 2.6 -5.9 0.7 3.5 0.4 1.6 -6.4
2 -16.2 -2.4 -3.4 1.6 -10.9 9.8 2.7

200 1 -4.8 1.8 7.2 0.9 -4.3 0.9 3.4
2 26.6 14.5 -22.1 -20.7 8.2 -0.5 9.7

The various horizontalized plots show us that, so far as orthogonal
polynomial contrasts go - simple or multiple - there is no

appreciable evidence of needing a more detailed description.

We are coming out as we should; using numbers to describe our
results and pictures to show no need to go further in the terms we
have considered.
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PART C: ANALYZING I111's PERFORMANCE IN OTHER TERMS

C1. Reformulating the Response

It is often the case that the original response variable, the values
of which were recorded (or calculated) in the process of the
experiment, is not the best variable to use in the analysis. It is
sometimes possible to find a reformulation of the response data
which yields a simpler, clearer set of relationships between the
dependent variable and the factors of the experiment. This is
achieved when there are fewer important interactions and when the
important main effects become more pronounced in reference to the
background level. This can sometimes be achieved by a more
trenchant change in the definition of the response which involves the
values of one or more factors as well as the response, one that may
largely remove the impact of a previously important main effect.

Besides seeking to simplify the relationships necessary to
adequately describe the data, we shall be delighted if we can also
make the variability of the response variable approximately
homogeneous.

In considering the results of our initial analysis of the response
data (as D.L. in grams) for our example person IBI, we noticed that
the linear contrast for the rate main effect, R 1, was far and away the
most important single contrast in the experiment. A look at Figure I
suggests that the relationship between difference limen in grams and
rate might be close to being a proportional one; Table 13 confirms
this. In this table we show the average of the difference limen values
(in grams) for IBI for each level of rate, averaging across all levels of
data by weight within each rate level. The second line of the table is

TABLE 13. Average difference limen in grams by rate and its ratio to rate
for person 151.

Rate (grams/30 seconds)

50 100 150 200

Average D.L. (in grams) 23.2 39.7 58.4 80.5

30( average D.L ) (in seconds) 13.9 11.9 11.7 12.1
rate
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the ratio of this average level in grams to the rate. To produce simple
units, since rate is measured in grams per 30 seconds, we multiply by
30 so that the response is now in seconds of time. Since the original
response variable, D.L., was the number of grams of water added to a
pail at a constant rate until the person could detect a difference in
pull, the new response (given in the second line of Table 13) is a
response time.

The relatively constant response time (relatively constant
compared to a change from 23 grams to 80 grams) for the various
levels of rate implies that the relationship between response and rate
can be largely explained by assuming that the person responds after a
constant time, regardless of the rate. (This was found by Green and
Tukey to hold in a collective analysis of all 8 persons.)

Since the large rate effect can be substantially explained in the
above manner, we can obtain a simpler analysis by changing our
response from difference limen (in grams) to

response time - difference limen x 30 (in seconds).
rate

Re-Expressing the Reformulated Response

We shall, in fact, go slightly farther. In their analyses of the
entire experiment, Green and Tukey found, when the dependent
variable was re-expressed as response time, that the standard
deviations were approximately linearly related to the means. This
can be seen most clearly by comparing persons. However, a plot of
the residuals versus predicted values for a linear-to-the-j fit of the
response time for our example person also shows an increase in the
variability as the predicted response time increases. In order to
produce more homogeneous variability, Green and Tukey re-
expressed the reformulated response on the log scale. We will do the
same, and so our new response is

log(response time),

the natural log of the response time as defined above.

Figure 8 shows the relationship between our new response
variable and rate within each combination of weight and date levels.
The actual data values appear in Table 14.
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Figure 8. Person IBI: male, blind. Log response time (Ln seconds).

TABLE 14. Log response time in log seconds for person IB1.

Rate Initial Weight (grams)

(gm/30 sec) Date 100 150 200 250 300 350 400

50 1 2.68 2.72 2.71 2.36 2.52 2.45 2.34
2 3.21 2.88 2.84 2.66 2.53 2.37 2.08

100 1 2.67 2.51 2.24 2.21 2.48 2.40 2.37
2 2.88 2.89 2.68 2.44 2.22 2,14 2.10

150 1 2.50 2.34 2.45 2.49 2.44 2.45 2.29
2 2.72 2.77 2.63 2.56 2.13 2.36 1.98

200 1 2.35 2.44 2.51 2.44 2.37 2.45 2.48
2 3.10 2.92 2.40 2.23 2.46 2.13 2.08
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C2. A First Analysis of Log Response Time

Having reformulated our response from D.L. (in grams) to log
response time (in log seconds), we proceed with an analysis of the
apparent relationships involving the various factors (data, rate and
weight, as before) via the horizontalized plotting techniques. As an
initial step, we will use the orthogonal polynomials, as before, to
produce the single-degree-of-freedom contrasts which define our
various bouquets. As in the analysis of D.L. in grams, we nominate
the linear-to-the-j contrasts DI, RI, WI, DRIl, DWii, RWll and
DRWlII as a priori important and pretrim our bouquets. Going
through the same steps as in the analysis for D.L., we reach the plots
of Figure 9. (We note, in passing, that RWII and DRW I11 are now
not the largest contrasts in their original bouquets - we had already
nominated them anyway.)

In our plots of the display ratios (in units of log seconds) in
Figure 9, we have truncated the vertical axis at 0.6 in order to better
show the detail. This truncation has put the two largest display
ratios, WI and DW11, off scale. The display ratios for the nominated
contrasts, which we are treating as 7 separate bouquets, are listed in
Table 15. Also included in Table 15, for comparison purposes, are the
display ratios (in units of grams) from the pretrimmed analysis of the
original response (in grams), as well as the median display ratio
across all 55 contrasts for both responses and the ratio of display ratio
to these medians.

TABLE 15. Display ratios (in units of loge seconds) for the polynomial
analysis of log response time for person IB1 (display ratios for
D.L. in grams included for comparison).

Log Response Time D.L. In Grams

Display Ratio Ratio To Display Ratio Ratio To
Contrast (log, Seconds) Median (Grams) Median

W i 1.97 16.4 98 10.9
DW11 1.42 11.8 82 9.1

R 1 .54 4.5 237 26.3
D 1 .34 2.8 28 3.1

RWI1 .33 2.8 33 3.7
DRW 111 .24 2.0 49 5.4

DR 11 .16 1.3 9 1.0

Median Display
Ratio Over .12 9

All 55 Contrasts
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Comparison of Analyses

We can see that the relative importance of the R 1 contrast has
been considerably reduced by the reformulation but that, in
comparison to the median display-ratio, it still merits appreciable
attention. The relative apparent importance of the weight and date-
by-weight linear contrasts remains high and has, in fact, been
increased by going to log response time. The relative importance of
the remaining four nominated contrasts has generally been decreased.

Table 16 shows the display ratios and ratios-to-scale for the
nominated contrasts when they are treated as the 7-contrast
nominated bouquet. Based on the sizes of their ratios-to-scale, we
might conceivably consider super-electing W I and DWI I as the most
important contrasts, but their relative importance over the remainder
of the nominated contrasts seems somewhat slight.

Examining the ratios-to-scale for the largest sizes of contrasts
within the trimmed bouquets, we find these to be generally small, the
largest being 1.4 for RW32, the cubic-by-quadratic interaction for
rate-by-weight, and also for DW 16, the linear-by-6th-degree
interaction for date-by-weight. Because of the relatively small sizes
of these ratios-to-scale and because of the unpromising nature of the
contrasts associated with them, we will not elect either one.

General Levels

In looking at the general level of the display ratios for the
trimmed bouquets (also reflected by their value of "scale" indicated
on the plots), we feel that for the most part these display ratios are
measuring noise. There are two exceptions - the first being the
relatively large value of the display ratios of the smallest size of
contrast within the three-factor bouquet - which we again take as
measuring some type of isolated error or granularity and accordingly
ignore. The other exception corresponds to the trimmed rate
bouquet, measuring the quadratic and cubic contributions of rate, and
is of more interest. The levels of the display ratios for both the
contrasts in this bouquet are nearly the same and are noticeably
above the general level ("scale") of the other trimmed bouquets and
above the levels of two of the nominated contrasts. This type of
general inflation of all levels of a trimmed bouquet, with no contrast
indicated as individually important, could be indicative of a particular
phenomenon, the discussion of which we turn to next.

. .....
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TABLE 16. Display ratios (in units of log, seconds) for the nominated
contrasts, treating them as a 7-contrast nominated bouquet.

Log Response Time For Person IBI

Contrast Display Ratio Working Value Ratio-to-Scale

WI1 .79 (1.691) 1.42
DWl1 .80 (1.208) 1.43

R 1 .41 (.908) .73
D 1 .34 (.674) .61

RWI1 .48 (.472) .86
DRW11 .55 (.288) 1.00
DR 11 .97 (.114) 1.74

scale - .55

PART D: RETHINKING A SCISSION INTO CONTRASTS

D1. Spreading of Contributions across Contrasts

We have previously stated that each trimmed bouquet, at the end
of post-trimming, where the ratios-to-scale of the remaining contrasts
are not sufficiently large, is deemed to consist of contrasts which
individually are not imparting significant information about the
relationships between the response variable and the collective
components of the factor(s) embodied in the (trimmed) bouquet. This
need not mean that the trimmed bouquet is certain not to be telling
us anything of importance about the data.

The elected contrasts from post-trimming are each, potentially,
individually representing systematic relationships in the data (of
varying degrees of strength depending on their sizes of trimmed-out
display ratios). It is possible that there are other, real, systematic
relationships within the data which are not individually captured by
any of the various contrasts which have been selected to define the
(original untrimmed) bouquets. Such a systematic relationship is
then jointly indicated by a number of contrasts, and its actual size is
spread across those contrasts.

The effect of such a situation might be a bouquet (trimmed or
untrimmed) where the general level of the display ratios (the scale) is
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at the background noise level and where the largest few sizes of
contrast correspond to the contrasts jointly indicating the systematic
relationship. Because this relationship is spread among a number of
the contrasts, it is possible that not all, or even none, of these

contrasts will be flagged in post-trimming as individually indicating
an interesting contribution.

If the systematic relationship is spread across enough of the
defining contrasts for a bouquet, the scale for that bouquet will be
inflated, and the plot of the display ratios for the bouquet will be at a
general level above the background noise level, although no
individual contrasts in the bouquet may be flagged as individually
interesting.

It is sometimes possible - either in these two circumstances or,
better, initially - to select a different bouquet of defining contrasts

for the line of the analysis-of-variance table which will more nearly
isolate the systematic contributions, each into a single (different)

contrast, and result in a potentially simpler account of the
interrelationships in the data.

D2. Some Useful Bouquets of Contrasts

Some interesting bouquets of orthogonal contrasts emphasize the
ordering of the versions of a factor. A classical example of those
using only order are the Helmert contrasts, which, for example, may
be formulated to compare the response value of the first version with
the average of the remaining versions, the value of the second with
the average of all but the first two, and so on, the last such contrast

comparing the response value of the next-to-last version with that of
the last version. We will call these Helmert SFP contrasts, for
"Starting with First Point." There are also Helmert SLP contrasts.
starting with the last point. In our situation, however, we would like
to use both order and value. In particular, we will often want to
include the linear contrast.

LPO's and FPO's

An interesting alternative was recently considered by Daniel
(1985), who notes that if a set of m responses at equally spaced
versions of a factor are nearly linear in that factor, then a commonly
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observed deviation from linearity is localized at one end, the
remaining m-1 points falling close to a straight line. He defines the
contrast LPOm, for Last Point Off of m, which measures the deviation
of the mth point in the sequence from its predicted value based on a
least squares line through the previous m-1 points. Table 17 shows
these Last Point Off contrasts for m - 3, ..., 7. Given n equispaced
versions of a factor, the collection (LPO, LPO,._1 ... , LP0 3, L) defines
a set of orthogonal contrasts, where L is the ordinary linear contrast
and LPO, compares the observed value at the ith level with the
predicted value from the line through the values for the first i-1
levels.

General coefficients for LPO,, m > 3:

ith value - m + 1 - 3i, i < m

end (mth value) - 1/(m-1)(m -2)

Sum of Squares - 1/4 (m-2)(m-l)n(m+l)

If we use the last column, labeled "(j)", in Table 17 as our
ordering, we get Daniel's First Point Off contrasts. Ordinarily, in
those circumstances where LPO or FPO contrasts are likely to be
helpful, either advance insight or data behavior will make it clear
which to select. But there may be doubt.

TABLE 17. Last Point Off contrasts for equally spaced
levels illustrated for m from 3 to 7 (* marks
special point).

i LP0 3  LPO4  LPO 5  LPO 6  LPO 7  (1)

1 1 2 3 4 5 7
2 -2 -1 0 1 2 6

3 1. -4 -3 -2 -1 5
4 3" -6 -5 -4 4

5 6" -8 -7 3
6 100 -10 2
7 15" 1

SSq 6 30 90 210 420
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EPO's

In such doubtful cases, the EPO contrasts, for End Point Off, which
treat both ends more nearly symmetrically, may be in order. These
can be easily made up from FPO's and LPO's. Table 18 shows
examples for n - 7 and n - 6, where the slight "preference" has been
given to LPO's. (In the world as a whole, we believe there is at least

as much curvature near the upper end of the range as near the lower
end.)

TABLE 18. Double-ended (EPO) contrasts for equally spaced levels for
n - 7 and n - 6 (* marks special point - note slight
preference for LPO).

n-7
Rank L m -7 m-6 m -5 m -4 m -3

1 of 7 -3 5 10 ....
2 of 7 -2 2 -8 3 3"

3 of 7 -1 -1 -5 0 -4 1
4 of 7 0 -4 -2 -3 -1 -2
5 of 7 1 -7 1 -6 2 1
6 of 7 2 -10 4 6" - -

7 of 7 3 15 - - - -

SSq 28 420 210 90 30 6
Identity L LPO 7  FPO6  LPO 5  FPO, LPO3

n -6
Rank L m -6 m - 5 m -4 m -3

1 of 6 -5 4 6 - -

2 of 6 -3 1 -6 2 1.

3 of 6 -1 -2 -3 -1 -2
4 of 6 1 -5 0 -4 1
5 of 6 3 -8 3 3- -
6 of 6 5 10* - - -

SSq 70 210 90 30 6
Identity L LPO, FP05 LPO4 FPO3
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SEPO's

If it is really important to have symmetry, to the extent that we do
not mind irrational coefficients, we can arrange for it by combining
pairs of LPO's and FPO's. We will call these SEPO contrasts, for
Symmetric End Point Off. For n - 7, for exam le, we can use L,
FP07+FPO6 -"f2, LP07+ LPO6 ", FPO5 +FP0 4 -3, LPO 5 +LP04 -3,
LPO3 -FP0 3. In these contrasts, both FPO7 and FPO6 treat the first
data point (of the 7) as special, LPO7 and LPO 6 the last data point,
FPOS and FPO4 treat the second data point (of the original 7) as
special and compare it with the next 4 and 3 points respectively, and
so on. For either initial or intermediate values of m > 4, the First

Point SEPO combination is FPOm + FPO r-I 3 , which has

sum of squared coefficients m (m +1)(m-2) 1) + f(m+1)(m -3)
2

Double-Ended Helmert Contrasts

We can also define a double-ended set of Helmert-type contrasts,
as illustrated in Table 19.

General coefficients for m non-zero entries (m > 3):

end values - m-2 -,-Ir(-2)
2 2

inner values - -1,

Sum of Squares - m (m -2).

D3. Alternative Descriptions of the (Log-Response) Rate Effect

We have noted that the trimmed rate bouquet (consisting of R 3
and R 2) has display ratios which are nearly equal and which appear
high relative to the assumed background level. From Figure 9 we can
see that the general level for the trimmed rate bouquet, as measured
by its scale, .285, is 3 times that of the apparent background level
(.092) as measured by the median scale of the 6 trimmed bouquets. A
pattern of display ratios such as this, given its high level relative to
the background, is suggestive of the spreading of a systematic
relationship across contrasts.
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In fact, looking at the values of the size of contrast for the
polynomial decomposition of the rate main effect, given in Table 20,
we see that the linear and quadratic contrasts are both relatively large
and of roughly the same magnitude.

Since the rate main effect has only three degrees of freedom, this
near equality of the two largest sizes-of-contrast suggests that another
orthogonal decomposition might produce a simpler description of the
relationship between log response time and rate. To help understand
if this is possible, we consider Figure 10, the plot of average values of
log response time by rate for each date (averaging across weight
within each combination of rate and date). The plot firstly shows a
similar relationship between average log response time and rate
within date, with a minor difference in the slopes of the simple linear
fits of log response time vs rate - accounting for the moderate DR 11
display ratio. More importantly, within a given date the levels of the
response variable for the latter three rates (100, 150 and 200) are all at
roughly the same value and notably lower than the level of log
response time for the rate of 50 grams/30 seconds.

Results for Various Bouquets

This latter observation suggests that a different bouquet of
orthogonal contrasts might usefully be considered in defining the
rate effect. Specifically, we want a set of contrasts which emphasize
the ordering of the levels of the factor, such as those given in the last
section.

Table 21 shows the results of applying a number of different
bouquets of contrasts to the average values of the log response time

TABLE 20. Values of the size of contrast for the
polynomial decomposition of the rate
main effect for IBI (log response
time).

Size of Contrast
Contrast (log, Seconds)

R 1 .365
R2 .315
R3 .100
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for each of the rates. These averages are shown as the first line of the
table. The remainder of the table consists of the sizes of contrast and
display ratios that would be obtained if each of the bouquets given in
the exhibit were used in defining the rate main effect. The sizes of
contrast are those which would be obtained frim a full analysis (and
are -f4times the normalized values which would be obtained by
applying the contrasts to the averages by rate). The display ratios are
for the original three-contrast bouquet (with working values 1.282,
.674, and .253). We have arranged the terms in each set of contrasts
so that the resulting sizes of contrast come out in descending order.
(Notice that EPO and LPO are identical for n - 4.) Clearly, in view of
the display ratios, if spreading is occurring with the polynomial
bouquet, then it is also occurring with the EPO, LPO, FPO, and SEPO
bouquets of contrasts. The common element is, of course, the
inclusion of the linear contrast.
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Figure 10. Person IBI log response time vs rate, by date (lines are the linear
fi t).
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If we consider the display ratios for the Helmert SFP bouquet, we
see that the majority of the information about the effect of rate on
log response time is captured in the first contrast, the one comparing
the response at rate 50 with the average of the other responses.
While it is difficult to justify nominating this contrast, we can
assuredly elect it, as its ratio-to-scale is 5.7. (According to Table 12,
5.7 is beyond the 0.5% level. Thus if we make an allowance for
multiplicity of between 6 - the number of alternative bouquets in
Table 21 - and 8 - the largest number of alternative bouquets we
might reasonably have considered, we are still well beyond 5%.) The
double-ended Helmert contrasts also produce much the same result.

D4. The Example after Rescission

Adopting the Helmert SFP contrasts as our scission of rate, and
appropriately adjusting the definitions of all two- and three-factor
contrasts which involve rate, will produce the horizontalized plots
shown in Figure 11.

In the plots we use the following notation: r I is the Helmert SFP
contrast comparing the first rate (i.e., 50 gms/30 seconds) with the
average of the remainder, r2 compares the second rate with the
average of 3rd and 4th, and r3 compares the third rate with the
fourth. The two-factor interactions involving rate are obtained as the
outer product of the Helmert contrasts for rate and the polynomial
contrasts for the other factor. Thus, rW I1 is the interaction involving
the first Helmert contrast for rate and the linear polynomial contrast
for weight. Similarly, the factor contrast, DrW123, combines the
day-to-day difference, the second Helmert contrast for rate, and the
cubic-polynomial contrast for weight.

As we have been doing all along, we have nominated the linear-
to-the-j contrasts which do not involve rate (i.e., D1, W1 and DW11)
as a priori potentially important contrasts. As mentioned above, it is
difficult to justify nomination of any of the Helmert contrasts, which
is why no contrasts involving rate have been nominated. We have,
however, elected r I as an a posteriori important contrast in view of its
ratio-to-scale within the full three-contrast Helmert SFP bouquet. No
other contrasts involving rate can be elected for any reasonable
threshold value.

Using the Helmert contrasts as our scission of rate has produced a
simplification in the apparent relationship between the response and
the three factors. This rescission has eliminated the apparent
importance of any interaction involving rate in an adequate
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description of the data and has isolated the (main) effect of rate into
the comparison of the response at the lowest rate with the average of
the responses at all other rates.

D5. Refactoring

Our general attitude of "redoing anything that seems to deserve it,
at least on a trial basis" should by now be clear. We have considered,
in increasing order of drasticness: rescission into contrasts, re-
expression of our response, (by implication at least) re-expression of
our factors, and reformulation of the response. Well along in this
order we should also consider another redo, refactoring of the pattern
of analysis. Actually, as we shall soon see, our example already
illustrates this.

splitting

The earliest approach to the simplest sort of refactoring seems to
be that of Brownlee's (1947) World War II concise book Industrial
Experimentation, which was heavily concerned with 2 k designs with
k - 4, 5 or 6 factors. Brownlee rightly, we feel, emphasized the
frequent advantages of "splitting the experiment" and then analyzing
and discussing the halves separately. This is particularly likely to
help when the two versions of a factor were "do Q" and "don't do
Q," and somewhat less likely to help when the versions were "the
high level of Y" and "the low level of Y."

Brownlee decided whether or not to split in terms of the
appearance of a significant interaction, which was not, for this
purpose, compared with the mean square above it. We would feel
that the proper reason for splitting is having something just above,
the size of whose effect (or mean square) is not much larger than the
interaction (which does itself need to appear not to be pure error).
This formulation makes it much clearer what is to be split - those
factors in the substantial interaction which do not appear in the label
of the similar-sized mean square above.

In Brownlee's case - 2 k for small k, high-order interactions for
error - it was not easy for an interaction to be significant, and if
significance was reached, it was not easy for the main effects to be
considerably still larger (unless they were known about all the time).
Thus, for 2 k, his approach usually led to decisions to split that would
also be made on the basis of what we assert to be appropriate reasons.
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The fact that this would not be true for designs whose factors have
several versions may account for the disappearance of the idea of
splitting, both from Brownlee's later books and from the literature
generally.

Splitting into Persons

The experiment from which our example is drawn was designed
as a crossing of the sort of 2 x 4 x 7 treatment pattern we have been
analyzing for a single person by a pattern involving 8 subjects. The
subject pattern involved 2 persons in each cell of a 2 X 2 for male vs.
female and seeing vs. blind. (The original failure to make a sensible
analysis corresponded to an a priori assumption that replication of
persons within cell belonged in the lowest error term, quite contrary
to the trustworthy maxim that "people will be different!")

Actually, the 8 people did behave quite differently, both in slopes
against individual factors, and in difference of slopes from day to day.
Splitting, at least initially, the data into 8 portions, one for each
person, seems to be an essential step in understanding what is going
on. This is a simple and important instance of refactoring.

Once we have done this, we can look at sets of 8 numbers, one for
each person, for both individual and collective responses, and ask
what they seem to show, particularly in terms of the imposed 2 x
design. In general, we see little associated with the factors of sex and
sight (somewhat confounded, as they were, with age) but strong
emphasis on "people will be different".

We turn briefly to the question of seeking limited consistency of
behavior across persons in Part E.

Tacit Re factoring

Actually, of course, the original data of Johnson and Tsao is best
thought of as having already been refactored, perhaps unwiselY,.
before anyone else ever saw any of it. The original 8 x 56 table,
eventually given in Johnson's (1949) book, for 8 persons and 3t,
condition-date combinations, was a table of means, each of 5
individual trials. The order of trial of the 5 repetitions of 2,;
conditions for each person was stated to be randomized, though no
details were reported. It would be strange indeed, in view of all the
other things that appear to have been going on in this data, if there
had been no time trends associated with the 140 - 5 x 28 trials for
each of the 16 - 2 x 8 date-person combinations. The effects of these
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trends were buried, in an unknown but reputedly random way, in
the table of means, whic :s all that later analysts have had at their
disposal. In a real sense, this is also an instance of refactoring - if
not of something still more drastic.

We believe, then, that this example illustrates - in more than one
way - the need for, and importance of, refactoring as a standard part
of an analyst's tool kit.

Splitting on "Date" in the Example

In the IBI data, both the weight slope and the date-by-weight
slope, if not nominated, would be elected. Indeed, the latter (DWl l)
is nearly as large as the former (W 1).

The great difference in weight slopes for this subject from one day
to the other is easily seen in a simple plot of means for date-weight
combinations, as in Figure 12. This suggests splitting on date.
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Figure 12. Person IBI log response time vs weight separated by date (lines
are the linear fit).
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The classical analysis of variance, after nomination of all linear-
to-the-j contrasts (now only for R, W, and RW) would take the form
shown in Table 22 (using parallel columns for the two dates):

TABLE 22. Parallel-column analysis-of-variance table splitting on date.

df MS
Label (Date 1) (Date 2) (Rate 1) (Rate 2)

Rate slope 1 1 .0322 .1130
Weight slope 1 1 .0704 2.6104
Interaction slope 1 1 .0737 .0022
Trimmed Rate 2 2 .0203 .0362
Trimmed Weight 5 5 .0066 .0059
Trimmed Interaction 17 17 .0114 .0200

It seems natural to present three panels of display ratios, one for
rate, one for weight, and one for interaction, as in Figure 13, where
we are treating each of the nominated contrasts (dIR 1, d 1W 1 and
dlRWII for day 1, d2R 1, d2WI and d2RWI1 for day 2) as separate
one-contrast bouquets. The display ratio for the largest of these -

d2WI, the weight slope for day 2 - is 2.4, which is 4.8 times larger
than that of the next largest nominated contrast (d2R 1).

Super-Election in the Split Example

Collecting the 6 nominated contrasts into a six-contrast nominated
bouquet and then computing display ratios produces the first two
columns of Table 23. Quite clearly, the weight slope for day 2 stands
out from the rest. (The ratio-to-scale for d2WI in the 6-contrast
bouquet is 2.4.) Electing this contrast and post-trimming produce the
last two columns of Table 23.

If, instead, we use the 3-contrast Helmert SFP bouquet as our
scission of rate, we get the horizontalized plots of Figure 14. In this
exhibit, we have nominated the linear weight-within-date contrasts
(dlW1 and d2W1) and elected the two rate-50-versus-the-rest
Helmert SFP contrasts of rate within date (dlrl and d2rl). The
election used a threshold value of 2. Notice that no rate-by-weight
interaction can be elected with any reasonable threshold. As before.
the use of the Helmert contrasts has concentrated the relationship
between response and rate largely into a single contrast.
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Combining the two nominated and the two elected contrasts into
a 4-contrast nominated-plus-elected bouquet, we get Table 24. The
ratio-to-scale of d2WI, the linear weight-within-date-2 contrast,
within the 4-contrast bouquet is 1.36, so that while this contrast is
notable, it is not outstandingly large within the nominated-plus-
elected bouquet. In the next section, we will give our final
interpretation of the IBI data, based on what we have now found.

TABLE 23. Display ratios for the nominated bouquet after splitting on
date.

Electing d 2W 1
6-Contrast Bouquet and Post-Trimming

Display Working Display Working

Contrast Ratio Value Ratio Value

d2W1 .998 (1.620) 2.398 (.674)

d2R 1 .300 (1.119) .219 (1.534)
dlRWIl .337 (.804) .268 (1.010)

d 1W .477 (.555) .393 (.674)
dIR 1 .533 (.336) .445 (.402)

d2RWl1 .356 (.132) .299 (.157)

scale - .416 (trim) scale - .299

TABLE 24. Display ratios for the nominated-plus-elected
bouquet after splitting on date with Helmert
contrasts for rate.

4-Contrast Bouquet

Contrast Display Ratio Working Value

d2WI 1.133 (1.426)
d 2 r .4C1 (.869)

d I W 1 .530 (.502)
dIr. i. 3 66 (.194)

scale - .831
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Two Further Illustrations

If we give no other example, the choice of the term "refactoring"
may come into question. So we offer a few possibilities for 2 x 2
tables: one where an interaction becomes a factor and vice versa:

Before Before
"no" "yes" "no" "yes"

to "no" stay move > stay to "no" to "yes"
~'and

to "yes" move stay move to "yes" to "no"

and one where an interactior, is transferred into (a) modifying the A
effect, (b) modifying the B effect, and (c) inserting a bonus in one
chosen cell (can be any one of the four (cf. Seheult and Tukey, 1982)).

A main effect A effect

B main effect B effect

AB interaction A-and-B-both-high bonus

D6. Recapitulation

Before considering the complete data set (of all 8 persons) and
then summarizing the main thrust of this paper, it is likely to be
helpful to recapitulate the steps we have taken, as seen in the light of
where we now stand.

In Part A we discussed the analysis of the original 2 x 4 x 7 - 56
numbers in terms that could, indeed should, have been planned in
advance of seeing those numbers. Our analysis focussed on pictures
corresponding to various analyses of variance, where the
correspondence was mediated by (a) scission of each "line" into a
bouquet of contrasts and (b) a horizontalized version, employing
display ratios, of Daniel's half-normal plot. We did this for naive and
linear-nominated analyses of variance, both conventional and
aggregated. The linear-nominated analyses made clearer what the
naive analyses suggested, namely that the essential description was in
terms of a few linear-to-the-j slopes, a bending for low rates, and an
apparently unstructured mass of residuals.

In Part B we considered election because of behavior in the data
set before us, in contrast to nomination based on past experience. We
found that much the same interpretations were suggested in our
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particular example by the results of election as by nomination, with
the three largest of what would otherwise be the nominated
contrasts, R 1, Wi1, and DW I1I being elected as important. We also
considered the nominated bouquet consisting of all 7 linear-to-the-j
contrasts and found that the rate slope R 1 could reasonably be
super-elected as the most important. By the end of Part B, we had

* come to the conclusion that, as far as the response of IBI in grams
was concerned, much of the relationship between the response and
rate, weight and date could be adequately described by the six largest

* linear-to-the-j nominated contrasts: RI, Wi, DWII, DRW IIl, RWI1
and D 1, in that order, where the linear rate slope is by far the most
important.

In Part C we considered the possibility of reformulating the
response and found that, since the response in grams was
approximately proportional to rate, reformulating the response to log
response time greatly reduced the apparent importance of the linear
rate contrast and allowed other relationships within the data to
become more apparent. In particular we discovered the relatively
high levels of the display ratios for the trimmed rate bouquet and
concluded that a systematic relationship between rate and the
response was being spread across the polynomial contrasts.

In Part D we rethought the scission of rate into contrasts. After
considering various bouquets which emphasized the ordering of the
levels of rate, we concluded that the essential relationship between
the response and rate was that person IBI has a larger response for
the smallest rate than the responses for the larger 3 rates, all of which
are at the same level. By adopting the Helmert SEP scission of rate
we found the apparent importance of all interactions involving rate
vanished.

Lastly, we have considered the utility of refactoring of the pattern
of analysis. We had already split the analysis by person based on the
maxim that people are different. When we further split the analysis
for person IBI on date, we discovered that a strong slope in weight
for day 2 predominated. Finally, we split over date and used the
Helmert contrasts as our scission of rate. This eliminated the rate-
by-weight interactions as potentially important.

At the end of our analysis of the response of person IBI in log
seconds, we are left with the following account of the data:

*a strong linear relationship between response and weight
within day 2, with the response decreasing in weight. A much
weaker, but still notable, linear relationship of the same
direction between response and weight within day 1,
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" a tendency for the responses at the lowest rate to be
significantly higher than the responses at the other three rates,
all three of which have responses at much the same level. This
relationship is the strongest for day 2 but is still notable at day 1,

" a collection of very much smaller effects, interactions, and noise.

PART E: A LOOK AT THE OTHER 7 PEOPLE

El. All 16 of the Person-Date Units

We have spent considerable effort on eccentric IBL. What of the
other 7 people? With these choices:

response - log response time

no aggregation

nomination - all linear-to-the-j

a nominated bouquet

the horizontalized plots generally show relatively nice behavior. For
5 of the 7 people, the plots of the trimmed bouquets are relatively flat
(except, sometimes, for the smallest contrasts) and all at roughly the
same level. For these 5 people, the nominated contrasts contain the
bulk of the information in the experiment, with little remaining in
the trimmed bouquets besides background noise.

Two of the 7 people deserve specific attention: persons IB2 and
IIA2. The horizontalized plots for these persons are shown as Figures
15 and 16.

Notice that in both of these figures the plots of the trimmed rate
and trimmed date-by-rate bouquet appear at relatively high levels in
relation to the levels of the bulk of the other trimmed bouquets.
Furthermore, for each person and for each of the trimmed rate and
trimmed date-by-rate bouquets, the slope of the line connecting the
display ratios of the two contrasts within the bouquet is negative,
indicating that the smallest contrast in the bouquet is relatively larger
than might be expected. The form of these plots is symptomatic of
the spreading of a systematic relationship across the contrasts in a
bouquet.
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Figure 17 shows the type of spreading for each of the two people.
In the plot of log response time versus rate within date for person IB2
shown as the first panel of Figure 17, we can see that the main
systematic relationship that is not being well represented by
individual polynomial contrasts is the large deviation of his response
on date 2 to a rate of 150 gm/30 seconds from the line through the
responses for the other three rates (for that date). This is a third-
point-off deviation from linearity. In the second panel of Figure 17,
there is a second-point-off deviation from linearity in the responses of
person IIA2 on date 2. The reasons for these patterns of response for
these two people, and the equivalent patterns for person IBI
(Figure 10), are unknown but demonstrate the maxim that people will
be different. (We might be suspicious of the randomization.)

Figure 15 also shows a pattern in the display ratios for the
trimmed weight bouquet. The monotonically decreasing nature of
this plot is also indicative of spreading, of a less obvious kind, as
indicated by Figure 18. The spreadings within the rate and weight
bouquets are at least partly responsible for the high display ratios
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Figure 17. Log response time vs rate by date -- persons IB2 and IIA2.
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seen in Figure 15 for the three smallest rate-by-weight contrasts
(RW25, RW23 and RW16 in ascending order of size of contrast;
descending order in display ratio).

Turning to the nominated bouquets for persons IB2 and 11A2, we
note that the ordering of the contrasts is different between these two
people and different from that of person IB1. The order of contrasts
within the nominated bouquet for person IB2 is, from largest to
smallest, Wi, D1, R1, RW11, DWl1, DRIl and DRW111, where W1
would assuredly be elected, D1 and R1 might also be, and the
remaining 4 contrasts, all interactions, are at the background noise
level. For person 11A2, the order of contrasts within the nominated
bouquet is, from largest to smallest, DI, R1, DR11, Wl, DW1l,
RW 11, and DRW 111, of which only D I would be elected.
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Let Us Split Again

These analyses have split over person. If we further split over
date and adopt a representation analogous to that used in section B5,
makinp the various slope coefficients (and the centercept-multiplied-
by-128) equal to plus or minus the square root of the corresponding
mean square, we get the results in Table 25. Also included in the
table is the median of the 24 display ratios of the three trimmed
bouquets within each date.

The major point to notice in Table 25 is that the relationships
between response and the linear-to-the-j contrasts, split on date, tend
to differ from person to person, and this is true even when we
compare the two people of a specified sex and sight combination.

Any thoughts we have about the further analysis of Table 25 will
have to wait for another day. If we go to working values of the
square root of chi-square as divisors for the 16 observed median
display ratios, we find that the picture looks best near 5 to 6 df in the
chi-square. Clearly there is more variability here than we would
expect for medians of 24 display ratios. We leave this, too, to another
time, noting only the large apparent effect of sex x sight.

E2. Reassembly

Let us suppose, for simplicity, that for each of the 8 persons, or,
perhaps, for each of the 16 person-date combinations, we have an
analysis whose main constituents are:

1) a few fitted constants, say of the linear-to-the-j form for
j = 1, 2 or 3 (for persons) or j - 1, 2 (for person-date
combinations);

2) an unresolved mish-mash of residuals.

We understand how to look rather effectively at the sets of 8 or 16
individual responses under (1), or even, perhaps, at the 8 or 16
collective spreads extractable from (2), but how should we look at the
8 or 16 mish-mashes?

Better Matching

If we knew enough about the order of presentation of the
treatments, which was once known, and if, also, the effect of order of
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presentation was somewhat consistent, across persons or across
person-date combinations, we could match order of presentation
across subjects (or across subject-date combinations) and see what
could be extracted. It is probably reasonable to presume that such
matching would be more effective than the only matching we can
still try, namely that in terms of rate-weight-dlate or rate-weight
combinations.

In either case, we can think of a two-way table of residuals, 8-by-
56 or 16-by-28, where we seek to find some matching across persons,
or across person-dates, but we do not want to - or dare not -
assume that this matching runs right across all 8 persons or all 16
(person-date) combinations. These tables ought, it would seem, to be
rescaled (for person or combination) before we tackle them. We need
some form of sub-factorial analysis, since a plain factorial will not
always work.

A first thing to do in such a situation would be to do a resistant
row-PLUS-column analysis, say by median polish. If only a few
persons, or a few combinations, escape some consistent pattern, such
an analysis would tend to find the pattern.

If this fails, it seems natural to begin by dividing the 8 persons or
16 combinations into two or three clusters, and then repeating the
first step for the smaller tables that result.

Delineations against Single Splits

Another, quite different approach, would be to select one split and
plot the composite of the other splits against it, delineating (Tukev,
1977) the scatter. If the whole Johnson and Tsao data were split into
8 portions, one per subject, with a 2 x 4 X 7 table of working
residuals for each, this would mean plotting 7 x 56 - 392 residuals
for other subjects against the 56 values of the selected subject.
Enhanced by delineation, such a plot has a real hope of detecting
commonality between the selected subject and a few of the other
subjects. Eight such plots would not be too many to look at.

Bear in mind that the purpose of the present section is only to
indicate that sub-factorial analyses are possible, and to stress that we
need a body of experience in their use and modification.
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PART F: SUMMARY

The overall thrusts of this account are.

1) That simple graphical views of what can easily be
calculated from factorial data can guide us in structuring a
useful description, one that:

la) gives detail, where that is useful,

ib) avoids detail, where detail would clog our
perception,

1c) alters such parts of the initially concerned expression,
formulation, and factoring as need to be changed for
increased simplicity of description.

2) That scission of "lines" of an analysis of variance into
bouquets of contrasts is a useful tool in doing this, noting
that:

2a) looking at alternative scissions can help, either by
making visible something that deserves attention, or
by increasing our confidence that we were not
missing anything visible,

2b) the choice of the basic scissions should be responsive
to the nature of the corresponding factor: measured.
ordered, weakly structured, or unstructured,

2c) the use of product scissions for interaction lines is the
best way we now know in which to begin (splitting
or other refactoring may be urged on us by the
results of the initial analysis),

2d) for measured factors, the use of the conventional
linear contrast as one of each of our bouquets seems
desirable,

2e) the most promising default may be to combine this
contrast with the EPO contrasts (although
combination with Helmert contrasts worked best for
the rate factor in our example).

3) That modifications and enhancements of Daniel's classical
half-normal plot, combined with (2), provide an effective
way to do (1), noting that we can make our pictures easier
to interpret and understand by:

3a) "horizontal izi ng-~ the plot by plotting "display ratio'
against working value,
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3b) making separate, sometimes superimposed plots for
different lines in the corresponding analysis of
variance,

3c) separating lines, for the purpose of (3b), into as
meaningful groups as we can find.

4) That enhancing the basic analysis into lines, by
nominating in advance - or electing because of the data's
behavior - certain contrasts to become separate "lines" in
an enhanced or revised analysis can be very important,
noting that:

4a) nomination is "safer" than election, and deserves our

careful attention,

4b) the loss from uncalled-for nomination is small, since

our procedures will often lead to reabsorption,

4c) the gain from needed nomination can be great, both
in focussing more attention on the nominated

contrast, when such focussing is needed, and in
avoiding inappropriate dragging upward of the
display ratios for other contrasts.

5) That a free hand in rescission, re-expression,
reformulation, and refactoring can be of great assistance in
such analysis, even though undeserved use of such
freedom may produce, with increased frequency, simple
descriptions of one data set that later prove not to extend
to others, since:

5a) to trust in the establishment of either qualitative (eg.
structures) or quantitative (e.g. slopes) behavior b"
the analysis of one data set collected under one set of
conditions is very poor science,

5b) the gain in understanding which usually
accompanies a simpler description is so frequently
helpful in the later use of the results, even when it
reflects accidental serendipity.

We believe all of these points apply to the analysis of most
factorial data sets with 3 or more factors (for the case of several
factors at two levels see Seheult and Tukey 1982), and, as well, to a
majority of other instances of analysis of variance of a similar size
and complexity.
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